
CHW 469 : Embedded Systems

Instructor:
Dr. Ahmed Shalaby http://bu.edu.eg/staff/ahmedshalaby14#

Embedded Systems

https://piazza.com/fci.bu.edu.eg/spring2017/chw469/home

http://bu.edu.eg/staff/ahmedshalaby14
https://piazza.com/fci.bu.edu.eg/spring2017/chw469/home

37
Embedded Systems

V Model Overview

Object Detection . . .

Image Processing . . .

Transforms …

Multiplication

38

Assignment no. 3

Embedded Systems

kindly read the following paper [Software Engineering for Space

Exploration]. In short, one paper only (2 pages), write an essay mention

your opinion about the topic.

Notes:

• you will deliver your report on Sunday (at lecture time).

• you can work in a group but the group is only two students.

• you may need to read more - paper references or external

resources.

• at lecture time, there will be a discussion regarding the topic, be

ready to present the topic and discuss it.

http://web.cs.iastate.edu/~rlutz/publications/Computer_2011_accepted.pdf

Introduction to C Programming

• Compiler is system software converts a high-level language program

(human readable format) into object code (machine readable format).

gcc, visual studio.

• Assembler is system software converts an assembly language program

(human readable format) into object code (machine readable format).

• Linker builds software system by connecting (linking) software

components.

• Loader places the object code in memory. In an embedded system, the

loader programs object code into flash ROM.

• Debugger is a set of hardware and software tools we use to verify system

is operating correctly. The two important aspects of a good debugger are

control and observability.

Embedded Systems

C code (z = x+y;) →

Assembly code (ADD R2,R1,R0) →

Machine code (0xEB010200)

Introduction to C Programming – What?

• C is a general-purpose programming language initially developed by

Dennis Ritchie between 1969 and 1973 while at AT&T Bell Labs.

• In most programming languages the column position and line number

affect the meaning. On the contrary, C is a free field language. Except for

preprocessor lines (that begin with #), spaces, tabs and line breaks have

the same meaning.

• C was invented to write an operating system - UNIX.

• C is a successor of B language.

• The language was formalized in 1988 by the American National Standard

Institute (ANSI).

• Today's most popular Linux OS and RDBMS MySQL have been written

in C.

Embedded Systems

Introduction to C Programming – Why ?
• Why C language ?

o last ten years, ranked one or two - high-level languages. (popular)

o C is the most common language for embedded systems. It is not tied

to any particular hardware or system.

o C is efficient programing language.

o C is high/mid level language.

Embedded Systems

Introduction to C Programming – Why ?

 C is much more flexible than other high-level programming languages:

• C is a structured language.

• C is a relatively small language.

• C has very loose data typing.

• C easily supports low-level bit-wise data manipulation.

• C is sometimes referred to as a “high-level assembly language”.

 When compared to assembly language programming:

• Code written in C can be more reliable.

• Code written in C can be more scalable.

• Code written in C can be more portable between different platforms.

• Code written in C can be easier to maintain.

• Code written in C can be more productive.

Embedded Systems

Embedded C Programming !

Embedded Systems

Main characteristics of an Embedded programming environment:

 Limited ROM.

 Limited RAM.

 Limited stack space.

 Hardware oriented programming.

 Critical timing (Interrupt Service Routines, tasks, …).

 Many different pointer kinds (far / near / rom / uni / paged / …).

 Special keywords and tokens (@, interrupt, tiny, …).

Introduction to C Programming – How ?

• Variables and Data Types.

• Operators and Hardware Manipulation.

• Program Flow Control.

• Advanced Types, Constants and Expressions.

• Arrays and Pointer Basics.

• Functions.

• Structures and Unions.

• Scheduling Techniques.

• Arrays of Pointers.

• Declarations.

• Preprocessor.

• Real-Time Operating Systems.

Embedded Systems

Introduction to C Programming– Program

• C Program is divided into four sections.

• Every C program has a main, and execution begins at the top of this main.

Embedded Systems

//**** 0. Documentation Section

// This program calculates the area of square shaped rooms

// Author: Ramesh Yerraballi & Jon Valvano

// Date: 6/28/2013

//

// 1. Pre-processor Directives Section

#include <stdio.h> // Diamond braces for sys lib: Standard I/O

#include "uart.h" // Quotes for user lib: UART lib

#define SIZE 10 // SIZE is found as a token, it is replaced with the 10

// 2. Global Declarations section

// 3. Subroutines Section

// MAIN: Mandatory routine for a C program to be executable

int main(void) {

UART_Init(); // call subroutine to initialize the uart

printf("This program calculates areas of square-shaped rooms\n");

}

Introduction to C Programming – Keywords

Embedded Systems

Standard ANSI C recognizes the following keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

__asm Specify a function is written in assembly code

C Programming / Basic Syntax

• A C program consists of various tokens and a token is either a keyword,

an identifier, a constant, a string literal, or a symbol.

• Comments are like helping text in your C program and they are ignored

by the compiler. /* This is a comment */

• A C identifier is a name used to identify a variable, function, or any other

user-defined item.

• A C identifier starts with a letter A to Z, a to z, or an underscore '_'

followed by zero or more letters, underscores, and digits (0 to 9).

• C does not allow punctuation characters such as @, $, and % within

identifiers.

• C is a case-sensitive programming language.

Embedded Systems

C Programming / Punctuation

• Punctuation marks (semicolons, colons, commas, apostrophes, quotation

marks, braces, brackets, and parentheses)

Embedded Systems

Punctuation Meaning

; End of statement

: Defines a label

, Separates elements of a list

() Start and end of a parameter list

{ } Start and stop of a compound statement

[] Start and stop of a array index

" " Start and stop of a string

' ' Start and stop of a character constant

C Programming / Storage Classes

• A storage class defines the scope (visibility) and life-time of variables

and/or functions within a C.

Embedded Systems

Storage

Class
Description

auto
auto storage class is the default storage class for all local

variables.

register
register storage class is used to define local variables that should

be stored in a register instead of RAM

static

static storage class instructs the compiler to keep a local variable

in existence during the life-time of the program instead of

creating and destroying it each time it comes into and goes out of

scope.

extern
extern storage class is used to give a reference of a global

variable that is visible to ALL the program files.

C Programming / Variables and Expressions

• Local variables contain temporary information that is accessible only

within a narrow scope.

• In C, local variable must be declared immediately after a brace { that

begins a compound statement. Unlike globals, which are said to be static,

locals are created dynamically when their block is entered, and they cease

to exist when control leaves the block.

• Although two global variables cannot use the same name, a local variable

of one block can use the same name as a local variable in another block.

• Constants refer to fixed values that the program may not alter during its

execution.

• Constants can be of any of the basic data types like an integer constant.

• void represents the absence of type.

Embedded Systems

C Programming / Variables and Expressions

Embedded Systems

Data type Precision Range

unsigned char 8-bit unsigned 0 to +255

signed char 8-bit signed -128 to +127

unsigned int compiler-dependent – 16 or 32 bits

int compiler-dependent– 16 or 32 bits

unsigned short 16-bit unsigned 0 to +65535

short 16-bit signed -32768 to +32767

unsigned long unsigned 32-bit 0 to 4294967295L

long signed 32-bit -2147483648L to

2147483647L

C Programming / Variables and Expressions

Embedded Systems

int main(void) {

unsigned long side; // room wall meters

unsigned long area; // size squared meters

UART_Init(); // call subroutine to initialize the uart

side = 3;

area = side*side;

printf("\nArea of the room with side of %ld m is %ld sqr m\n",side,area);

}

C Programming / Operators

Embedded Systems

 An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions.

 C language is rich in built-in operators and provides the following

types of operators :

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Bitwise Operators

• Assignment Operators

• Misc Operators

C Programming / Arithmetic Operators

Embedded Systems

Operation Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an integer division. B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

-- Decrement operator decreases the integer value by one. A-- = 9

Given that A holds 10 and B holds 20

C Programming / Relational Operators

Embedded Systems

Operation Description Example

==
Checks if the values of two operands are equal. If yes, then the

condition becomes true.

(A == B) is not

true.

!=
Checks if the values of two operands are not equal. If the

values are not equal, then the condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than the value of

right operand. If yes, then the condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of

right operand. If yes, then the condition becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than or equal to

the value of right operand. If yes, then the condition becomes

true.

(A >= B) is not

true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

(A <= B) is

true.

Given that A holds 10 and B holds 20

C Programming / Logical Operators

Embedded Systems

Operation Description Example

&&
Called Logical AND operator. If both the operands are non-

zero, then the condition becomes true.
(A && B) is

false.

||
Called Logical OR Operator. If any of the two operands is

non-zero, then the condition becomes true.
(A || B) is

true.

!
Called Logical NOT Operator. It is used to reverse the

logical state of its operand. If a condition is true, then

Logical NOT operator will make it false.

!(A && B) is

true.

Given that A holds 1 and B holds 0

C Programming / Bitwise Operators

Embedded Systems

Operation Description Example

&
Binary AND Operator copies a bit to the result if it

exists in both operands.

(A & B) = 12,

i.e., 0000 1100

|
Binary OR Operator copies a bit if it exists in either

operand.

(A | B) = 61,

i.e., 0011 1101

^
Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A ^ B) = 49,

i.e., 0011 0001

~
Binary Ones Complement Operator is unary and has

the effect of 'flipping' bits.

(~A) = -61,

i.e., 1100 0011

<<

Binary Left Shift Operator. The left operands value is

moved left by the number of bits specified by the right

operand.

A << 2 = 240

i.e., 1111 0000

>>

Binary Right Shift Operator. The left operands value is

moved right by the number of bits specified by the

right operand.

A >> 2 = 15

i.e., 0000 1111

Given that A = 0011_1100 (60) and B = 0000_1101(13)

C Programming / Assignment Operators

Embedded Systems

Operation Description Example

=
Simple assignment operator. Assigns values from right side

operands to left side operand

C = A + B assigns the

value of A + B to C

+=
Add AND assignment operator. It adds the right operand to

the left operand and assign the result to the left operand.

C += A is equivalent to

C = C + A

-=

Subtract AND assignment operator. It subtracts the right

operand from the left operand and assigns the result to the

left operand.

C -= A is equivalent to

C = C - A

*=

Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to the

left operand.

C *= A is equivalent to

C = C * A

/=

Divide AND assignment operator. It divides the left operand

with the right operand and assigns the result to the left

operand.

C /= A is equivalent to

C = C / A

%=
Modulus AND assignment operator. It takes modulus using

two operands and assigns the result to the left operand.

C %= A is equivalent

to C = C % A

C Programming / Assignment Operators

Embedded Systems

Operation Description Example

<<= Left shift AND assignment operator. C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as

C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as

C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as

C = C | 2

C Programming / Misc Operators

Embedded Systems

Operation Description Example

sizeof()
Returns the size of a variable. Sizeof (a),

where a is integer, will return 4.

&
Returns the address of a variable. &a; returns the actual address of the

variable.

* Pointer to a variable. *a;

? :
Conditional Expression. If Condition is true ? then value X :

otherwise value Y

C Programming / Precedence - Priority

Embedded Systems

Precedence Operators Associativity

highest () [] . -> ++(postfix) --(postfix) left to right

++(prefix) --(prefix) !~ sizeof (type) +(unary) -

(unary) &(address) *(dereference)

right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

? : right to left

= += -= *= /= %= <<= >>= |= &= ^= right to left

lowest , left to right

C Programming / Operators

Embedded Systems

void main(void)

{

long x,y,z;

x=1; y=2;

z = x+4*y;

x++;

y--;

x = y<<2;

z = y>>2;

y += 2;

}

What is the value of x, y and z ?

C Programming / Operators

Embedded Systems

void main(void)

{

long x,y,z; // Three local variables

x=1; y=2; // set the values of x and y

z = x+4*y; // arithmetic operation z = 1+8 = 9

x++; // same as x=x+1; x = 2

y--; // same as y=y-1; y = 1

x = y<<2; // left shift same as x=4*y; x = 4

z = y>>2; // right shift same as x=y/4; y = 1

y += 2; // same as y=y+2; y =3

}

C Programming / Conditional Branching

Embedded Systems

• Decision making structures specifies one or more conditions to be

evaluated or tested, along with a statement or statements to be executed if

the condition is determined to be true, and optionally, other statements to

be executed if the condition is determined to be false.

• Conditional statements :

o if statement

o if...else statement

o nested if statements

o switch statement

o nested switch statements

o ? Operator

C Programming / Loops

Embedded Systems

• A loop statement allows execution of a statement or group of statements

multiple times.

• Loop statements :

o while loop.

o for loop.

o do … while loop.

o nested loop.

C Programming / Loop control

Embedded Systems

• Loop control statements change execution from its normal sequence.

When execution leaves a scope,

• Control statements :

o break statement: terminates the loop or switch statement and

transfers execution to the statement immediately following the loop

or switch.

o continue statement: causes the loop to skip the remainder of its body

and immediately retest its condition prior to reiterating.

o goto statement: transfers control to the labeled statement.

C Programming / Functions

Embedded Systems

• A function is a sequence of operations that can be invoked from other

places within the software.

• A function can have zero or one output parameter.

• C programmer to distinguish the two terms declaration and definition.

• A function declaration (prototype) specifies its name, its input parameters

and its output parameter.

• A function definition specifies the exact sequence of operations to execute

when it is called.

• A function definition generates object code, which are machine

instructions to be loaded into memory.

• An object must be declared or defined before it can be used in a statement.

• Actually the preprocessor performs the first pass through the program that

handles the preprocessor directives.

• A top-down approach is to first declare a function, use the function, and

lastly define the function.

C Programming / Functions

Embedded Systems

• Every C program has at least one function, which is main(), and all the

most trivial programs can define additional functions.

• The C standard library provides numerous built-in functions your program

can call. For example, strcat() to concatenate two strings, memcpy() to

copy one memory location to another location, and many more functions.

• The main component of the function are:

o Name:
The actual name of the function. The function name and the parameter list

together constitute the function signature.

o Parameters:
A parameter is like a placeholder. When a function is invoked, you pass a

value to the parameter.

o Body:
a collection of statements that define what the function does.

o Return Type:
Function may return a value. The return type is the data type of this value.

C Programming / Functions

Embedded Systems

unsigned long Calc_Area(unsigned long s);

int main(void) {

unsigned long side; // room wall meters

unsigned long area; // size squared meters

UART_Init(); // call subroutine to initialize the uart

printf("This program calculates areas of square-shaped rooms\n");

side = 3;

area = Calc_Area(side);

printf("\nArea of the room with side of %ld m is %ld sqr m\n",side,area);

side = side+2;

area = Calc_Area(side);

printf("\nArea of the room with side of %ld m is %ld sqr m\n",side,area);

}

// Calculates area

// Input: side of a room (unsigned long) in meters

// Output: area of the room (unsigned long) in square meters

unsigned long Calc_Area(unsigned long s) {

unsigned long result;

result = s*s;

return(result); }

Introduction to C Programming – Keywords

Embedded Systems

Standard ANSI C recognizes the following keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

• The volatile keyword disables compiler optimization, forcing the compiler to

fetch a new value each time.

• volatile is used when defining I/O ports because the value of ports can

change outside of software action. volatile is used when sharing a global

variable between the main program and an interrupt service routine.

The “Super Loop” Software Architecture

Embedded Systems

• The main difference between the embedded systems and desktop

computer systems in programing is:

o The vast majority of embedded systems are required to run only one

program.

o This program start running when the microcontroller is powered up,

and will stop running when the power is off.

void main(void)

{

X_Init(); // initialize function X

while(1) // ‘for ever’ (Super Loop)

{

X(); // Run function X()

}

}

Ex.1 – Flashing LED

Embedded Systems

void main(void)

{

LED_FLASH_Init();

while(1)

{

// Change the LED state (OFF to ON, or vice versa)

LED_FLASH_Change_State();

// Delay for *approx* 1000 ms

DELAY_LOOP_Wait(1000);

}

}

Ex.2 - Central Heating Controller

Embedded Systems

• Develop a microcontroller-based control system to be used as part of the

central-heating system in a building. The system consists of:

o The gas-fired boiler (which we wish to control).

o The sensor (measuring room temperature).

o The temperature dial (through which the desired temperature is

specified) – user interface.

o The controller itself.

Ex.2 - Central Heating Controller (Cont…)

Embedded Systems

/* Framework for a central heating system using a Super Loop. [Compiles and

runs but does nothing useful */

] #include "Cen_Heat.h"

/*--*/

void main(void)

{

C_HEAT_Init(); // Init the system

while(1) // 'for ever' (Super Loop)

{

// Find out what temperature the user requires (via the user interface)

C_HEAT_Get_Required_Temperature();

// Find out what the current room temperature is (via temperature sensor)

C_HEAT_Get_Actual_Temperature();

// Adjust the gas burner, as required

C_HEAT_Control_Boiler();

}

} /*--- END OF FILE -----------------------------------*/

MDK Introduction

Embedded Systems

• The Keil Microcontroller Development Kit (MDK) helps you to create

embedded applications for ARM Cortex-M processor-based devices.

MDK is a powerful, yet easy to learn and use development system.

• The MDK-Core is based on the genuine Keil μVision IDE/Debugger with

leading support for Cortex-M processor-based microcontroller devices.

• Getting Started with MDK Create Applications with μVision® for ARM®

Cortex®-M Microcontrollers

http://www2.keil.com/mdk5/install

